Here, by using a scalable high-energy ball milling approach, we report a practical hierarchical micro/nanostructured P-based anode material for high-energy lithium-ion batteries, which...
Si is highly regarded as a potential next-generation negative electrode material for LIBs owing to its high theoretical capacity and energy density. However, Si-negative electrodes suffer from substantial volume
Similar to the process of graphite electrodes, the production of negative graphite electrodes (Figure 1c) for LIB involves impurity removal, pretreatment (crushing, passivation, crushing, and shaping), energy-intensive graphitization, and surface modification, resulting in a total energy consumption of 7825.2 kWh t −1 graphite (Note S4, Supporting Information). The
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LIBs), but the poor cycling stability hinders their practical application. Developing favorable Si nanomaterials is expected to improve
As shown in Fig. 1 (a), cathode materials account for 30 % of the battery production cost and 8 % of the carbon dioxide equivalent emissions (CO 2 e) from battery production. Cathode materials concentrate valuable lithium and other metals and, from a sustainable EVs development perspective, are also the part of the battery with the greatest
We have developed a method which is adaptable and straightforward for the production of a negative electrode material based on Si/carbon nanotube (Si/CNTs) composite
We have developed a method which is adaptable and straightforward for the production of a negative electrode material based on Si/carbon nanotube (Si/CNTs) composite for Li-ion batteries. Comparatively inexpensive silica and magnesium powder were used in typical hydrothermal method along with carbon nanotubes for the production of silicon
Hard carbon (HC) is a promising negative-electrode material for Na-ion batteries. HC electrochemically stores Na + ions, resulting in a non-stoichiometric chemical composition depending on their nanoscale structure, including the carbon
Fabrication of new high-energy batteries is an imperative for both Li- and Na-ion systems in order to consolidate and expand electric transportation and grid storage in a more economic and sustainable way. Current research appears to focus on negative electrodes for high-energy systems that will be discussed in this review with a particular
Owing to the shortcomings of traditional electrode materials in alkali metal-ion batteries (AIBs), such as limited reversible specific capacity, low power density, and poor cycling performance, it is particularly important to develop new electrode materials. Covalent organic frameworks (COFs) are crystalline porous polymers that incorporate
In summary, we demonstrated a new class of electrode configuration, the electrode-separator assembly, which improves the energy density of batteries through a lightweight cell design. The scalable and uniform fabrication of the electrode-separator assembly was facilely achieved by surface modification of the hydrophobic separator using a PVA
To further increase energy density as supported by the "fundamental research on new secondary batteries and relative energy materials" from the National Basic Research Program of China since 2009, researchers have focused on the development of lightweight electrode materials along with the multi-electron reaction (lightweight elements, Eq. 4) through
Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low electrochemical potential (−3.04 V vs. standard hydrogen electrode), and low density (0.534 g cm −3).
Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g -1, with 100% capacity...
Figure 3a shows the major ecological concerns pertaining to Li +-ion technologies, including 1) recycling efficiency of cell components, 2) energy-intensive production of battery materials (including metal oxide cathodes, graphite anodes, polymer separators, and metal current collectors), 3) costly processing of electrodes, 4) expensive production of unit
Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low
In addition, as an alternative to conventional inorganic intercalation electrode materials, organic electrode materials (e.g., conductive polymers, organic carbonyl compounds, quinone/diimides/phenoxide and their derivatives) are promising candidates for the next generation of sustainable and versatile energy storage devices. 118 On the basis of new
As safety is one of the major concerns when developing new types of batteries, it is therefore crucial to look for materials alternative to potassium metal that electrochemically insert K + at low potential. Here, the different types of negative electrode materials highlighted in many recent reports will be presented in detail.
Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LIBs), but the poor cycling stability hinders their practical application. Developing favorable Si nanomaterials is expected to improve their cyclability. Herein, a controllable and facile electrolysis route to prepare Si nanotubes (SNTs), Si nanowires (SNWs
As safety is one of the major concerns when developing new types of batteries, it is therefore crucial to look for materials alternative to potassium metal that electrochemically insert K + at low potential. Here, the
Fabrication of new high-energy batteries is an imperative for both Li- and Na-ion systems in order to consolidate and expand electric transportation and grid storage in a more economic and sustainable way. Current research appears
Si is highly regarded as a potential next-generation negative electrode material for LIBs owing to its high theoretical capacity and energy density. However, Si-negative electrodes suffer from substantial volume expansion during lithiation/delithiation, leading to the exposure of fresh Si surfaces and continuous electrolyte decomposition, which
Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g -1, with 100% capacity...
With the development of high-performance electrode materials, sodium-ion batteries have been extensively studied and could potentially be applied in various fields to replace the lithium-ion cells, owing to the low cost and natural abundance. As the key anode materials of sodium-ion batteries, hard carbons still face problems, such as poor cycling
Such carbon materials, as novel negative electrodes (EDLC-type) for hybrid supercapacitors, have outstanding advantages in terms of energy density, and can also overcome the common shortcomings of carbon negative electrodes, such as self-discharge and mismatch with different positive electrode (pseudocapacitor-type or battery-type) materials.
This review paper presents a comprehensive analysis of the electrode materials used for Li-ion batteries. Key electrode materials for Li-ion batteries have been explored and the associated challenges and advancements have been discussed. Through an extensive literature review, the current state of research and future developments related to Li-ion battery
Here, by using a scalable high-energy ball milling approach, we report a practical hierarchical micro/nanostructured P-based anode material for high-energy lithium-ion
Hard carbon (HC) is a promising negative-electrode material for Na-ion batteries. HC electrochemically stores Na + ions, resulting in a non-stoichiometric chemical composition depending on their nanoscale structure, including the carbon framework, and interstitial pores. Therefore, optimizing these structures for Na storage by altering the
We have developed a method which is adaptable and straightforward for the production of a negative electrode material based on Si/carbon nanotube (Si/CNTs) composite for Li-ion batteries.
Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low electrochemical potential (−3.04 V vs. standard hydrogen electrode), and low density (0.534 g cm −3).
Current research appears to focus on negative electrodes for high-energy systems that will be discussed in this review with a particular focus on C, Si, and P.
In the case of both LIBs and NIBs, there is still room for enhancing the energy density and rate performance of these batteries. So, the research of new materials is crucial. In order to achieve this in LIBs, high theoretical specific capacity materials, such as Si or P can be suitable candidates for negative electrodes.
Hard carbon (HC) is a promising negative-electrode material for Na-ion batteries. HC electrochemically stores Na + ions, resulting in a non-stoichiometric chemical composition depending on their nanoscale structure, including the carbon framework, and interstitial pores.
In the context of ongoing research focused on high-Ni positive electrodes with over 90% nickel content, the application of Si-negative electrodes is imperative to increase the energy density of batteries.
We are deeply committed to excellence in all our endeavors.
Since we maintain control over our products, our customers can be assured of nothing but the best quality at all times.