Structure optimization of liquid-cooled lithium-ion batteries based on particle swarm algorithm Zhihao Song Shanghai University of Engineering Science Xintian Liu ( xintianster@gmail
The thermal management of lithium-ion batteries (LIBs) has become a critical topic in the energy storage and automotive industries. Among the various cooling methods, two-phase submerged liquid cooling is known to be the most efficient solution, as it delivers a high heat dissipation rate by utilizing the latent heat from the liquid-to-vapor
Among the three scenarios, the curved channel manifests the highest
Ensuring the lithium-ion batteries'' safety and performance poses a major challenge for electric vehicles. To address this challenge, a liquid immersion battery thermal management system utilizing a novel multi-inlet collaborative pulse control strategy is developed. Moreover, different cooling methods (cooling structures, immersion coolants
The thermal management of lithium-ion batteries (LIBs) has become a
Amongst the different types of BTMS, the liquid-cooled BTMS (LC-BTMS)
The findings demonstrate that a liquid cooling system with an initial coolant
It was presented and analyzed an energy storage prototype for echelon utilization of two types (LFP and NCM) of retired EV LIBs with liquid cooling BTMS. To test the performance of the BTMS, the temperature variation and temperature difference of the LIBs during charging and discharging processes were experimentally monitored. The results show
In order to investigate the heat generation performance of a battery package during discharge, it is firstly charged at a constant current of 3 A (0.3 C) in a thermal chamber where the temperature is set to be 25 °C until
Herein, thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.
In order to improve the battery energy density, this paper recommends an F2-type liquid cooling system with an M mode arrangement of cooling plates, which can fully adapt to 1C battery charge–discharge conditions. We provide a specific thermal management design for lithium-ion batteries for electric vehicles and energy storage power stations
The depletion of fossil energy resources and the inadequacies in energy structure have emerged as pressing issues, serving as significant impediments to the sustainable progress of society [1].Battery energy storage systems (BESS) represent pivotal technologies facilitating energy transformation, extensively employed across power supply, grid, and user domains, which can
Liquid-cooled Energy Storage Cabinet. ESS & PV Integrated Charging Station . Standard Battery Pack. High Voltage Stacked Energy Storage Battery. Low Voltage Stacked Energy Storage Battery. Balcony Power Stations. Indoor/Outdoor Low Voltage Wall-mounted Energy Storage Battery. Smart Charging Robot. 5MWh Container ESS. F132. P63. K53. K55. P66. P35. K36.
The growing enthusiasm for electric vehicles has escalated their significance in addressing environmental stress and energy challenges. Lithium-ion batteries have surfaced as exceptional energy providers, chiefly owing to their unparalleled energy storage capacity, low self-discharge rate, extended service life, and the ability to deliver substantial voltage levels [[1],
In this paper, a nickel–cobalt lithium manganate (NCM) battery for a pure electric vehicle is taken as the research object, a heat dissipation design simulation is carried out using COMSOL software, and a charging heat generation
Qian et al. proposed an indirect liquid cooling method based on minichannel
In summary, the optimization of the battery liquid cooling system based on
As the energy density and power density of batteries continue to increase, the demand for the thermal performance of BTMS may be reduced, and the energy consumption performance of liquid-cooled BTMS may receive more attention. In this case, the parallel configuration with a mesh channel is undoubtedly a better choice. Among all the
A hybrid liquid cooling system that contains both direct and indirect liquid cooling methods is numerically investigated to enhance the thermal efficiency of a 21700-format lithium-ion battery pack during the discharge operation. One of the most significant challenges that liquid-based direct cooling systems face is the filling of the heat capacity of the coolant during the
HJ-ESS-EPSL series, from Huijue Group, is a new generation of liquid-cooled energy storage containers with advanced 280Ah lithium iron phosphate batteries. The system consists of highly efficient, intelligent liquid cooling and reliable energy management solutions for various applications such as peak shaving, high-power grid expansion, industrial power backup, and
In order to investigate the heat generation performance of a battery package during discharge, it is firstly charged at a constant current of 3 A (0.3 C) in a thermal chamber where the temperature is set to be 25 °C until the battery voltage reaches 36.5 V and 3.65 V; it is charged continuously at a constant voltage of 3.7 V (0.05 C) until the
Among the three scenarios, the curved channel manifests the highest operating temperature, reaching a maximum value of 305.03 K for airflow and 304.44 K for liquid flow, while the lowest operating temperature recorded is 300 K.
Herein, thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.
Qian et al. proposed an indirect liquid cooling method based on minichannel liquid cooling plate for a prismatic lithium-ion battery pack and explored the effects of the number of channels, inlet mass flow rate, flow direction, and channel width on the thermal performance of this lithium-ion battery pack using numerical simulation method. Their
Amongst the different types of BTMS, the liquid-cooled BTMS (LC-BTMS) has superior cooling performance and is, therefore, used in many commercial vehicles. Considerable ongoing research is underway to improve the performance of LC-BTMS, with most of the focus on numerical simulations.
In this paper, a nickel–cobalt lithium manganate (NCM) battery for a pure electric vehicle is taken as the research object, a heat dissipation design simulation is carried out using COMSOL software, and a charging heat
When one examines a typical liquid cooled battery pack (Fig. 3), the ratio for the overall heat transfer rate (hA) for liquid (Dexcool) over air is about three [18]. Therefore, the cooling. Fig. 1
It was presented and analyzed an energy storage prototype for echelon utilization of two types (LFP and NCM) of retired EV LIBs with liquid cooling BTMS. To test the performance of the BTMS, the temperature variation and temperature difference of the LIBs during charging
The findings demonstrate that a liquid cooling system with an initial coolant temperature of 15 °C and a flow rate of 2 L/min exhibits superior synergistic performance, effectively enhancing the cooling efficiency of the battery pack. The highest temperatures are 34.67 °C and 34.24 °C, while the field synergy angles are 79.3° and 67.9
In summary, the optimization of the battery liquid cooling system based on NSGA-Ⅱ algorithm solves the heat dissipation inside the battery pack and improves the performance and life of the battery. The goals of optimization include improving heat dissipation efficiency, achieving uniformity of fluid flow, and ensuring thermal balance to avoid
Four cooling strategies are compared: natural cooling, forced convection, mineral oil, and SF33. The mechanism of boiling heat transfer during battery discharge is discussed. The thermal management of lithium-ion batteries (LIBs) has become a critical topic in the energy storage and automotive industries.
Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
Under the conditions set for this simulation, it can be seen that the liquid-cooling system can reduce the temperature rise of the battery modules by 1.6 K and 0.8 K at the end of charging and discharging processes, respectively. Fig. 15.
The maximum temperature of the battery under two-phase liquid-immersion cooling remained below 33 °C during the test, and the temperature fluctuation of the battery was <1.4 °C, which was very beneficial to the efficiency and safety of the battery. Fig. 10.
The lower the temperature, the smaller the synergistic angle of the fluid field and the more consistent the synergistic effect at different flow rates and coolant temperatures. With an increase in cooling flow rate and a decrease in temperature, the heat exchange between the lithium-ion battery pack and the coolant gradually tends to balance.
Specifically engineered for the purpose of cooling the cells within a battery pack, a battery liquid cooling system offers effective and secure cooling while minimizing the risk of overheating or short-circuiting.
We are deeply committed to excellence in all our endeavors.
Since we maintain control over our products, our customers can be assured of nothing but the best quality at all times.